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Abstract. An exact expression for the single-eigenvalue probability density function for 
any dimension of a Gaussian orthogonal ensemble is found by analytic continuation. It 
is shown that the form can be used to derive a number of exact results in a simple way. 
In odd dimensions it is shown that the single-eigenvalue probability density function can 
be written as a sum of two densities. 

1. Introduction 

The concept of a random matrix was originally introduced by Wigner (1957) to study 
the statistical properties of the compound-nucleus level widths and their positions. It 
was soon established that if each matrix element of a real symmetric Hamiltonian 
(Mehta 1967) has an independent Gaussian distribution such that the dispersion of 
the off-diagonal elements is half the dispersion of the diagonal element then the joint 
distribution of the eigenvalues is a Wishart distribution. It was shown by Dyson (1962) 
that Gaussian ensembles can be classified as orthogonal, unitary or symplectic depend- 
ing how they behave under rotations and time-reversal operation, e.g., if a system is 
invariant both under time reversal and rotation then the appropriate matrix ensemble 
for such a system is a Gaussian orthogonal ensemble (GOE). In further development 
of matrix ensemble theory one was interested in finding an expression for the probability 
density function of the single eigenvalue by integrating out all but one eigenvalue in 
the joint-eigenvalue distribution. It was found that mathematically it is easier to work 
with the Gaussian unitary ensemble (GUE) than with GOE. The mathematical difficulty 
in GOE arises because of a factor which is a product of the absolute value of the 
differences of the eigenvalues. The method of integration over alternate variables was 
developed by Mehta (1967) to overcome this difficulty. Even during the early develop- 
ment of GOE it was found that GOE has another feature which distinguishes it from 
GUE, namely the probability density function of the single eigenvalue had two different 
mathematical forms depending on whether the dimension of the matrix N was even 
or odd. An exact expression for N = 2 m  was subsequently derived by Mehta and 
Gaudin (1960) for the probability density function of the single eigenvalue using the 
method of integrating over alternate variables. The purpose of the present work is to 
show that one could carry out further mathematical steps so that the expression can 
be analytically continued for odd values of N also. In the process we find a simpler 
exact expression for the probability density of the single eigenvalue for any N. 

0305-4470/88/040903 + 06$02.50 @ 1988 IOP Publishing Ltd 903 



904 N Ullah 

In 0 2 we describe the formulation and in 0 3 present some exact results. Concluding 
remarks are presented in § 4. 

2. Formulation 

Let us consider the joint distribution of N real eigenvalues E , ,  E2, . . . , EN. It is given 
by (Mehta 1967): 

where K is the normalisation constant. 
Taking N = 2m, the method of integrating over alternate variables (Mehta and 

Gaudin 1960) gives the following probability density function of the single eigenvalue: 

where +i( X )  are the normalised harmonic oscillator wavefunctions given by 

h ( X )  = (&2'i!)--1'2 exp(-fX2)H,(X).  (3) 

It is convenient to rewrite expression (2) using the following relation satisfied by the 
harmonic oscillator wavefunctions: 

Jz41m-1 = (2m- 1) ' /242,-2-(2"' '2~2m. (4) 

The probability density P2,(E) can then be written as 

We note here that in GUE,  the second factor in expression ( 5 )  is absent. It is this 
second factor which has to be recast to find the analytically continued form of the 
probability density function for any dimension N. 

Let I denote the integral 

Using the definition of the Hermite polynomial in terms of a confluent hypergeometric 
function (Abramowitz and Stegun 1965) and carrying out the integration over X, we 
can write I as 

T ( - m + r )  1 1 
2"'+'m ! ,=0 r ( - m )  r(;-tr) r !  

M ( 1 , i + r , f E 2 )  (7) ~- ( - 1 ) mT1/4[ ( 2 m )  ! ] 
I =  E exp(-fE2) c 
where M (  a, b, x) denotes a confluent hypergeometric function (Abramowitz and Stegun 
1965). 

Expanding the confluent hypergeometric function and writing the powers of E in 
terms of Hermite polynomials using the relation 
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we find after some simplification that Z is given by 

Expression (9) can be rewritten as 

Using expressions (5) and  (10) it is easy to see that the analytically continued form 
of the single-eigenvalue probability density function PN ( E )  can be written as 

An alternative form of P N ( E )  can also be obtained using expressions (5) and (9) 
and  the generating function for the Hermite polynomials. It is given by 

where *F,  is the generalised hypergeometric function (Abramowitz and  Stegun 1965). 

3. Some exact results using the analytically continued form 

In this section we shall give some exact results which can be derived using expressions 
(11) and  (12). Some of the results which are familiar from earlier work provide a 
check on these expressions, while others are given for the first time here. 

One nice feature of both expressions (1 1) and (12) is that because of the orthogonal- 
ity of the 4,, it is almost trivial to see that P N ( E )  is normalised to unity. This feature 
was not there in P z m ( E )  given by expression (2) which had an  integral over 42m-2. 
The same is true about a later form (Mehta 1971, Mehta and  Pandey 1983) of the 
single-eigenvalue probability density function in  which the lower limit of the integral 
was extended to -cc to include both even and  odd dimensions. 

It is also easy to calculate low-order moments of the single eigenvalue using 
expression (1 l ) ,  e.g., the second moment can be calculated using the relation 

(13) x ’ ~ , ( x )  = f [ ( n +  l ) (n+2) ]” ’4n t2+f (2n+  1)4,++[n(n - 1 ) 1 ” ~ 4 , - ~  

and the orthogonality of the &, and is given by 

( E z, = f ( N + 1 ) . (14) 

This checks with the value calculated using the relation 
N 

E f = T r H 2  
i =  1 

and using the Gaussian distribution of the matrix elements of H. 
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We next show the rederivation of the two-dimensional distribution of the single 
eigenvalue using expression ( 1  1 ) .  Using the following sum rule (Hansen 1975): 

in expression ( 1 1 )  we find that 

where erf is the error function (Abramowitz and Stegun 1965), which is the same 
expression as one finds by integrating out one of the eigenvalues from a joint distribution 
of two eigenvalues. 

We next show that the probability density function of the single eigenvalue can be 
written as a sum of two densities when the dimension N is odd. 

Putting N = 2m + 1 in expression ( 1  1 )  and using the relation 

which can be easily proved using the generating function for the Hermite polynomials, 
we can write P2,,,+] as 

1 2 m  1 
P 2 m + 1 = -  2m+ 1 i = o  c +f+22m+3iZP r ( m + $ )  

Defining a new set of harmonic oscillator wavefunctions 

and writing the second term in expression (19) in terms of x , ( E )  we can write P2m+l 
as 

Thus in odd dimensions the probability density function of the single eigenvalue can 
be expressed as a sum of two densities, one given in terms of 4' and the other in 
terms of x'. 

As a further application of the form of the single-eigenvalue probability density 
PN(E) given by expression ( 1 1 )  we now calculate the exact Fourier transform of 
PN(E). We write the Fourier transform g(a) as 
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Using expression (1 1) and the generating function (Abramowitz and Stegun 1965) for 
Hermite polynomials, we find that it is exactly given by 

X f f  2/2)  
[ (2  v + 2) ! I 2  

where L%’, is the associated Laguerre polynomial. 
We see from expression (23)  that first part of the Fourier transform is exactly the 

same as one finds in G U E  (Ullah 1985). 
From expression (23) we can derive the corrections applied to the semicircular 

distribution which arises from the second part. For this purpose we use Hilb’s type 
of formula for LK’!,. It is given by (Bateman 1953): 

exp(-+x)x“”L:’(x) = J , ( ( V X ) ~ ’ ~ ) + O ( ~ ~ ’ ~ - ~ ’ ~  ) (24)  
T(n + (Y + 1) 
( ~ / 4 ) ~ ’ ~ n  ! 

where a>-1,  O < x ~ w < w  and v = 4 n + 2 ( ~ + 2 .  

asymptotic expression we can write g( a )  as 
Retaining the first term of the summation in expression (23) and using the above 

1 
J 2 ( m a ) .  . . . 2 J , ( m a )  1 

g ( f f ) = -  6 ( m a )  4 6  ( N + $ )  
Taking the inverse Fourier transform (Abramowitz and Stegun 1965) we find that 

P,(E) for large N can be written as 

where w = E / ( 2 N +  1 )  and T 2 ( w )  = ( 2 w 2 -  1) is the Chebyshev polynomial of the 
second kind. P N (  E )  is zero for E 2 / 2 N  or w 2 >  1 .  

Lastly we remark that one could derive a closed form expression for all the even 
moments Mi,, of the single eigenvalue using the exact Fourier transform given by 
expression (23) .  It is given by 

1 n- l  1 2 y + 1  
N . = 0 ( 2 v + 2 ) !  ( n - v - l ) !  

F ( - ( N  - l ) ,  - n ;  2; 2 ) + -  

x F ( - ( N  - l ) ,  1 - n + v ;  2 v + 3 ;  2 )  

( 2 v +  N +  l ) !  T [ ( N +  1)/2] r ( v +  1+ N / 2 )  ’( ( N - l ) !  r ( N / 2 )  T ( v + i + N / 2 )  (27) 

Again the first part of M z ,  is the same as one finds in G U E  and gives the asymptotic 
form of M 2 , .  

4. Concluding remarks 

We have shown that starting from the probability density function of the single 
eigenvalue for even dimension one can analytically continue the expression so that it 
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is valid both for even and odd dimensions. The new expression has the nice feature 
that low-order moments of the single eigenvalue can be easily written down; the 
normalisation integral in particular is trivial to find. A new interpretation of the 
probability density function in odd dimensions is given. It can be written as a sum of 
two densities. 

Further it is shown that using the exact Fourier transform of the probability density 
function, one can write a closed form expression for all the even moments of the single 
eigenvalue. The Fourier transform can also be used to find corrections applied to a 
semicircular distribution. 
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